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ABSTRACT

Process analytical technology has elevated the role of sen-
sors in pharmaceutical manufacturing. Often the ideal tech-
nology must be selected from many suitable candidates based
on limited data. Net analyte signal (NAS) theory provides an
effective platform for method characterization based on mul-
tivariate figures of merit (FOM). The objective of this work
was to demonstrate that these tools can be used to character-
ize the performance of 2 dissimilar analyzers based on dif-
ferent underlying spectroscopic principles for the analysis of
pharmaceutical compacts. A fully balanced, 4-constituent
mixture design composed of anhydrous theophylline, lactose
monohydrate, microcrystalline cellulose, and starch was gen-
erated; it consisted of 29 design points. Six 13-mm tablets
were produced from each mixture at 5 compaction levels
and were analyzed by near-infrared and Raman spectroscopy.
Partial least squares regression and NAS analyses were per-
formed for each component, which allowed for the compu-
tation of FOM. Based on the calibration error statistics, both
instruments were capable of accurately modeling all constit-
uents. The results of this work indicate that these statistical
tools are a suitable platform for comparing dissimilar ana-
lyzers and illustrate the complexity of technology selection.

KEYWORDS: Near-infrared, Raman, partial least squares,
analyte signal, calibration, tabletR

INTRODUCTION

Several technologies may be suitable for a given analytical
measurement application. Ultimately, a decision must be
made as to which device will be deployed. Common meth-
ods for comparison of instruments based upon different
fundamental principles are not well established. While in-
strument selection can be based on many different aspects
of a technology (cost, performance, infrastructure, etc), this

work will focus only on method performance characteriza-
tion for 2 sample technologies.

Process analytic measurement applications in pharmaceut-
ical science include qualitative and quantitative identifica-
tion of compounds, examination of phase transformations
and polymorphs, and investigations of manufacturing and
process development. Near-infrared (NIR) and Raman spec-
troscopy are both sensitive to, and capable of accurately pre-
dicting, these phenomena.1,2 As NIR spectroscopy is based
on optical absorption and Raman spectroscopy on the mea-
surement of inelastic scattering, comparison of the parallel
performance of these 2 classes of instrumentation is indirect.
More often than not, the instrument eventually deployed is
selected based on limited criteria that do not consider all as-
pects of performance.

Calibrations are frequently evaluated using the coefficient of
determination (R2) and/or estimation of prediction error.3-7

These measures do not directly consider issues such as
precision5,6 and signal-to-noise (S/N) ratio.8,9 The effective-
ness of a method should be judged based on a complete as-
semblage of indicators that describe all aspects of performance
and are generalized across technological platforms. Net
analyte signal (NAS) theory provides a mechanism for di-
rectly determining figures of merit (FOM) for the perform-
ance of a method.

NAS theory is the concept of separating relevant signals for
a particular component of interest from the remaining inter-
fering elements present within the spectra.10 Lorber11 is wide-
ly acknowledged as the originator of multivariate NAS theory;
Brown,12 however, makes the clarification that Morgan13

published on a similar topic prior to Lorber. NAS provides
a tool for calculating multivariate FOM; prior to Morgan/
Lorber, techniques similar to NAS were applied to data from
only univariate methods.14 For a more detailed discussion of
FOM for univariate calibration, please refer to Olivieri et al
and their references.14

Multivariate NAS was first implemented using pure compo-
nent projection11 and classical regression.15 Implementation
of NAS via pure component or classical regression meth-
ods is potentially cumbersome10; this problem was solved
by Lorber et al10 by using inverse regression instead.15 Both
classical and inverse regression mathematics are suitable for
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the determination of NAS; however, the remaining descrip-
tions employ inverse regression.

Mathematically, NAS is defined as the portion of signal
unique to the constituent being considered and is orthogonal
to all other factors present in the data.10,11 NAS, therefore,
involves the signal directly useful for quantification.10 A mix-
ture spectrum (r) extracted from a spectral matrix containing
multiple constituents can be resolved into the following:

r ¼ r� þ r⊥ ð1Þ

where r* and r┴ are mutually orthogonal components rep-
resenting the NAS vector for the particular component of
interest and the vector of interferences, respectively.10 It is
well understood that controllable and uncontrollable errors
influence the performance of any analytical technique. This
error (ε), which varies for each sample acquired, can also
be partitioned into its respective mutually orthogonal com-
ponents: the part that is orthogonal to the interferences (ε*),
and the portion that lies within the interference space (ε┴).16 It
is important to understand that the estimated r* will not lie
exactly in the true direction of the NAS vector as a result of
ε*.16 ε* is the portion of total stochastic error (ε) that con-
tributes to imprecision.

Multiple algorithms for calculating NAS have been reported
in the literature,17,18 with the method of computation and re-
sulting output differing. In this work, the method proposed
by Bro and Andersen is used.19 All equations use X to rep-
resent spectral matrices; bold characters other than X (eg, x,
y, and NAS) represent vectors; small, italicized characters
(eg, x and y) represent scalars. Additionally, the notation ||x||
signifies the Euclidean norm of x and the superscript T in-
dicates the transposition of a vector.

Bro and Andersen calculate the NAS vector for a particular
component of interest as follows:

NASi
∧

¼ ðxi ⋅ bÞ ⋅
�
bT ⋅ b

�−1
⋅ bT ð2Þ

where xi is a sample spectrum from matrix X and b is a
column vector of the regression coefficients for X19; prin-
cipal components regression or partial least squares (PLS)
are common regression techniques used to estimate b.20 It
should be noted that X is corrected for the mean; thus, out-
puts from computations employing N

∧
AS are mean-centered.

Results can be rescaled using the vector of means from the
centering operation of X to the original range. NAS can also
be expressed in scalar form, with no loss in information, by
the following equation10:

NAS
∧

i ¼ ‖NAS∧
i ‖ ð3Þ

Additional discussion concerning the mathematics behind the
determination of NAS can be found elsewhere.10-13,16-19,21-23

MATERIALS AND METHODS

Tablet Production

A fully balanced, 4-constituent mixture design composed of
anhydrous theophylline (Lot No 92577, Knoll AG, Ludwig-
shafen, Germany), Lactose 316 Fast Flo NF Monohydrate
(Lot No 8502113061, Hansen Labs, New Berlin, WI), micro-
crystalline cellulose (MCC; Avicel PH 200, Lot No M427C,
FMC BioPolymer, Mechanicsburg, PA), and soluble starch
GR (Lot No 39362, EMD Chemicals Inc, Gibbstown, NJ)
was generated. The approximate median particle size of the
theophylline, lactose, MCC, and starch (reported by documen-
tation from their respective suppliers) was ~90, ~100, ~180,
and ~17 μm, respectively. No further analysis or alterations
were performed on the materials to determine or alter the par-
ticle size distribution. Twenty-nine design points were chosen
to cover a wide range in all constituents and to remove any
possibility of factor aliasing. Analysis of the mixture co-
variance matrix (not shown) demonstrated that the design
was balanced in all directions, giving equal emphasis to all
constituents.

Materials for each design point mixture were dispensed by
weight (Data Range, model no AX504DR, Mettler Toledo,
Columbus, OH) and were transferred to 25 mL glass scin-
tillation vials. In total, 6000 mg of material was weighed out
for each point, and the nominal weights for all constituents
were adjusted to the observed mass data to calculate actual
concentration. The vials were tumbled for 5-minute cycles
on a rotating Jar Mill (United States Stoneware, East Pales-
tine, OH). After every blending period, an NIR reflectance
spectrum was acquired through the bottom of the glass
(FOSS NIRSystems 5000, FOSS NIRSystems, Inc, Laurel,
MD). An ad hoc partial least squares II (PLS-2) calibration,
using the constituent concentrations as reference data, was
constructed after each blending cycle to assess homogeneity.
Mixtures were assumed to be homogeneous when further
mixing failed to yield an increase in the calibration’s coeffi-
cient of determination.

The mixtures from each design point were then subdivided
and tableted at 5 levels of compaction force (67.0, 117.3,
167.6, 217.8, and 268.1 MPa) on a Carver Automatic Tablet
Press (Model 3887.1SD0A00, Wabash, IN) using flat-faced
punches and a 13-mm die. A dwell time of 10 seconds was
employed. Six ~800-mg compacts were produced per design
point, with the sixth tablet’s compaction force randomly se-
lected from 1 of the 5 possible levels. The compaction order
was randomized to ensure homoscedasticity of experimental
error. Following compaction, the samples were allowed to
relax for 15 days prior to spectroscopic analysis.
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Data Acquisition, Instrumentation, and Software

NIR reflectance measurements for both sides of each tablet
were acquired over the wavelength range of 1100 to 2498 nm
at a 2-nm increment averaging 32 scans (FOSS NIR Systems
5000, Vision version 2.00, FOSS NIRSystems, Inc, Laurel,
MD). Prior to scanning, the tablets were precisely centered
using the positioning iris standard on this instrument. Two ad
hoc PLS-2 calibrations, using the constituent concentrations
as reference data, were constructed from spectra correspond-
ing to a specific surface of the tablets.

Raman data were measured using a prototype PhAT System
spectrometer with a laser excitation wavelength of 785 nm
and a fiber-coupled probe head (HoloGRAMS version 4.0,
Kaiser Optical Systems, Inc, Ann Arbor, MI). The PhAT Sys-
tem samples a spot size of ~6 mm. Two accumulations were
acquired per scan employing an integration time of 10 sec-
onds over the range of –64.2 to 1895.7 cm–1 at a 0.3 cm–1

increment. A dark scan was subtracted and the cosmic ray
filter and intensity calibration options were selected. The tab-
lets used in this study were larger than could be accommo-
dated in the tablet holder located in the sample chamber of the
PhAT System, so the tablets had to be manually positioned
such that the laser spot was visually centered on the flat face.

All spectral data were analyzed in the Matlab environment
(version 7.1,MathWorks, Natick,MA) using the PLS_Toolbox
(version 3.0, Eigenvector Research, Inc, Manson, WA) and
software developed by the Duquesne University Center for
Pharmaceutical Technology.

PLS Analysis

NIR and Raman data were analyzed separately but in an
identical fashion. The NIR spectral range and resolution were
not altered; however, the Raman spectral range was trun-
cated to 205.5 to 1895.7 cm–1 to remove residual Rayleigh
line radiation and to reflect the operating range of the ana-
lyzer. Prior to calibration, the Raman data were evaluated
using a moving-window calibration technique21 with various
window widths to determine whether further wavenumber
truncation would be beneficial. PLS regression24 was used
via the SIMPLS algorithm25 to relate spectroscopic response
to concentration for each constituent individually. Since ana-
lyte concentration is incorporated into the denominator of
some FOM calculations, samples having a corresponding
zero concentration for the component being considered were
excluded. Therefore, samples included in the actual calibra-
tion data sets were unique for each component.

Preprocessing routines, including standard normal variate
scaling, detrending, derivatives, and combinations of these,
were tested.2 The most favorable data pretreatment method
was selected based on a minimization of “batchwise” cross-

validation error, where the batches in this instance were the
5 different compaction levels. The root-mean-standard er-
ror (RMSE) for cross-validation (RMSECV) and calibration
(RMSEC) were calculated using the following formula:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðyi−yiÞ2
n

s
ð4Þ

where yi is the measured concentration,
∧
yi is the predicted

concentration, and n is the number of samples for the data
set under consideration. According to International Confer-
ence on Harmonisation (ICH) guidelines, accuracy expresses
the agreeability between reference and predicted values.26

Therefore, RMSEC and RMSECVare used to report the ac-
curacy of the selected calibration.

Multivariate FOM

The optimal number of latent variables selected during the
estimation of each PLS regression vector was determined
by minimizing RMSECV. Once established, the regression
vector was used to determine the NAS according to Equa-
tions 2 and 3. Given the number of chemical constituents and
physical factors varying in this design, it was anticipated that
no more than 4 latent variables would be required; models
with greater rank are feasible but would be increasingly dif-
ficult to justify. The NAS vector affords the opportunity to
calculate numerous FOM, such as sensitivity, analytical sen-
sitivity, selectivity, and S/N ratio. FOM can be determined
for every sample using Equations 5 to 11.

Sensitivity characterizes the extent of signal variation as a
function of analyte concentration; the higher the sensitivity,
the greater the instrumental response to an increase in con-
centration.10,11 Sensitivity is calculated as follows10,14,18:

SEN∧
i ¼ NAS∧i
yi

ð5Þ

where S
∧
ENi, N

∧
ASi, and yi are the vector of sensitivity for

each instrument variable, the NAS vector, and the measured
concentration for the ith sample, respectively. Sensitivity is
reported in units of instrument intensity per concentration.
Measured concentrations are autoscaled before being used
in Equation 5. It is also possible to express sensitivity as a
univariate figure of merit by taking the Euclidean norm of
the sensitivity vector:

SEN
∧

i ¼ ‖ SENi

∧

‖ ð6Þ

where S
∧
ENi is the univariate measure of sensitivity for the

ith sample.18,22 Sensitivity is reported in this document as

SENi ¼ NASi
yi

^
^

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1

ðyi�ŷiÞ2

n

s
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the mean of the univariate sensitivity values for all samples
under consideration.

Sensitivity is applicable to only calibrations constructed on
devices operating under the same fundamental principles be-
cause it incorporates units of instrument signal (NIR absor-
bance intensity and Raman scattering intensity). The parameter
analytical sensitivity (γ) was developed to provide an impar-
tial assessment of dissimilar analytical techniques.22 Ana-
lytical sensitivity is calculated as follows:

γ ¼ S
∧
EN

δr
ð7Þ

where S
∧
EN is the mean of the sensitivity values under

consideration found using Equation 6 and δr is a measure
of instrumental noise. This normalization procedure allows
direct comparison of the measure of sensitivity associated
with NIR and Raman data. Analytical sensitivity has the
dimension of concentration–1. For the work presented in this
article, δr was determined as the mean standard deviation of
the predicted concentrations of 4 tablets broadly varying in
constituent concentrations, scanned once a day for 6 consec-
utive days. Additionally, this figure of merit allows an esti-
mation of the minimum discernible concentration difference
given the dynamic range modeled22 (γ–1); this is referred to
as effective resolution.

Predicted values were determined by the following equation27:

y
∧ ¼ X ⋅ b ð8Þ

where X is the spectral matrix and b is the PLS regression
vector, which varies depending on the number of latent var-
iables applied. It should be noted that the concentration data
have been previously autoscaled; thus, predicted values need
to be rescaled using the mean and standard deviation of the
measured concentrations before the accuracy is determined
via Equation 4.

Selectivity is a dimensionless univariate measure of the por-
tion of instrumental signal that is not lost because of spectral
overlap—in other words, the quantity of signal unaffected
by interfering factors—and is restricted to a value between 0
and 1.10 This statistic is calculated for each sample, using
the following equation10,23:

S
∧
ELi ¼ jjN∧

ASijj
jjxijj ð9Þ

where N
∧
ASi and xi are the NAS vector and the original

spectrum for the ith sample. The magnitude of the selec-
tivity parameter is directly dependent on the degree of spec-
tral interference associated with the particular analyte under

consideration. Selectivity is reported in this article as the mean
of the selectivity values for all samples under consideration.

The S/N ratio, one of the most important metrics for general
comparison of methods, is calculated as follows10:

S=Ni

∧
¼ N

∧
ASi
δr

ð10Þ

where N
∧
ASi is the scalar representation of the NAS vector.

Linear regression was performed between the measured con-
centration and the univariate NAS values in order to estimate
scale (a1) and offset (ao) coefficients to transform the NAS
value into units of concentration. This enables the S/N ratio
to be a dimensionless statistic for this 4-constituent mixture
design:

S=Ni

∧
¼

a1⋅
�
N

∧
ASi

�
þ ao

δr
ð10aÞ

The S/N ratio is reported in this article as the mean of the
S/N values for all samples under consideration.

Given the wide range of concentrations present within the
design, limit of detection (LOD) is a practical figure of merit.
LOD can be computed as follows28:

LOD ¼ kDσ
m

ð11Þ

where kD is the statistical confidence factor (here, kD = 3),
m is the slope of a univariate classical least squares fit of
the predicted and reference data, and σ is defined as δr in
Equation 7. Since the predicted vs measured plot was not sig-
nificantly different from unity, a value of 1.0 was assumed for
m in all cases.

Precision Statistics

Precision figures of repeatability and intermediate precision
were determined in accordance with ICH guidelines26 and
were reported as the standard deviation of the predicted con-
centration values (Equation 8) for repeat measurements. Re-
peatability and intermediate precision values were established
using the randomly chosen design point comprising 20% theo-
phylline, 20% lactose, 0%MCC, and 60% starch, compacted
at a force of 167.6 MPa. Repeatability was determined with-
out repositioning of the tablet between successive scans, as
well as by removing and subsequently recentering the com-
pact before acquiring the next measurement. Six scans for
each type of repeatability test were collected one after the
other on the same day. Intermediate precision was determined
by scanning the tablet once a day for 6 consecutive days.

SELi ¼ ¬NASi¬
¬xi¬

^
^
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RESULTS AND DISCUSSION

NIR Analysis

The RMSEC and RMSECV values were plotted against
the number of latent variables selected for PLS modeling
(Figure 1). Savitsky-Golay first-derivative preprocessing29

(11-point smoothing and second-order polynomial fit) was
chosen based on the minimization of RMSECV. It was inde-
pendently determined that to adequately model the NIR absor-
bance data, theophylline required 3 latent variables, while 4
were required for lactose, MCC, and starch. Model rank was
chosen as the point where a rapid decline in the incremental
variance captured was observed, with an awareness of the ex-
pected feasible limit of dimensionality based on the factors
varying within the design. Without derivative preprocessing,
an additional latent variable would have been required to
compensate for the variation in compact density. It is spec-
ulated that the derivative preprocessing most effectively sup-
pressed the physical effect of compaction, which has been
shown to have a significant effect on the spectral baseline.1,2

Figure 2 displays the regression vectors in addition to the pure
component spectra theophylline, lactose, MCC, and starch;

note that the pure component spectra and the PLS regression
vectors were scaled to facilitate viewing. To gather the pure
component scans, powder for each constituent was placed in
a glass scintillation vial and spectra were acquired directly
through the bottom of the glass; each pure component spectrum
represents a mean of 3 scans. As expected, each regression
vector is highly correlated with its associated pure compo-
nent scan. The goodness-of-fit seen in the predicted vs mea-
sured concentration values for the 4 constituents demonstrates
the linearity of the PLS models implemented (Figure 3a).

As an aside, it is important to observe that all predicted val-
ues herein are independent of any NAS calculations per-
formed. Certain NAS techniques allow the determination of
predicted concentrations using the following equation10,18:

y∧i ¼ jjNAS∧i jj
jj SEN∧

i jj
ð12Þ

where N
∧
ASi, S

∧
ENi, and yi are as defined previously. Con-

sidering Equation 5 for the calculation of the sensitivity
vector, the NAS method employed within this article forbids
the use of Equation 12 because it forces

∧
yi ¼ yi.

Figure 1. Plot of RMSEC (squares) and RMSECV (triangles) vs the number of partial least squares factors used to model near-infrared
data for theophylline (a), lactose (b), microcrystalline cellulose (c), and starch (d), respectively. RMSEC indicates root-mean-standard
error for calibration; RMSECV, root-mean-standard error for cross-validation.

yi ¼ ¬NASi¬
¬SENi¬^

^
^
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Following estimation of the PLS regression vectors for each
constituent, the portion of the NIR signal related to only the
component being analyzed was determined for all calibra-
tion samples (Equation 2). Figure 2 exhibits the NAS vector

along with the corresponding interference spectrum for each
calibration sample for theophylline, lactose, MCC, and starch.
This unique plotting scheme directly illustrates the contrast
between analyte and interference signals. Furthermore, this

Figure 2. Near-infrared pure component spectra (upper solid lines), PLS regression vectors (lower solid lines), NAS (black), and
interference (gray) vectors for each calibration sample, for theophylline (a), lactose (b), and MCC (c), and starch (d), respectively. NAS
indicates net analyte signal; PLS, partial least squares; MCC, microcrystalline cellulose.

Figure 3. Predicted vs measured concentration plot for near-infrared (a) and Raman (b) data. Circles represent the 50th percentile,
while the upper and lower stars represent the 25th and 75th percentiles, respectively. The unity line is shown in black.
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graphically illustrates the ability of multivariate calibration
to achieve selectivity. For example, in Figure 2a, a great
deal of spectral variance can be observed around 1500 nm.
However, this variation is not attributed to the presence of
theophylline; rather, it is the result of the interfering com-
ponents. This effect is evident in the relatively small range in
intensity for the NAS spectra in comparison to the larger
intensity range for the interference spectra. Conversely, much
of the spectral variation around 1650 nm is due to the var-
iance in theophylline concentration. Similar phenomena can
be seen for the other 3 components (Figure 2).

Raman Analysis

The RMSEC and RMSECV were plotted against the num-
ber of PLS latent variables used in the model (Figure 4).
Savitsky-Golay first-derivative preprocessing29 (33-point
smoothing and second-order polynomial fit) was also se-
lected based on minimization of RMSECV. Presently, there
are no known published reports identifying any consistent
correlation between variation in Raman spectra and tablet
hardness, implying that Raman spectra are insensitive to com-

pact hardness variation. The data collected in this study are
in agreement with this conclusion; no discernible pattern
was observed relating Raman intensity and tablet compaction
force (Figure 5). Hence, the role of derivative preprocessing
was apparently not to mitigate any spectral effect of hard-
ness variation; rather, it suppressed the baseline effect present
in the spectra. Theophylline and lactose each required 4 latent
variables, while 3 were required for MCC and starch.

Figure 6 displays the scaled regression vectors in addition
to the scaled pure component spectra for theophylline, lac-
tose, MCC, and starch. Raman pure component scans were
gathered in the same manner as the NIR. Again, it was an-
ticipated that the PLS regression vectors would include
information pertaining to the component, which was con-
firmed by the similarities between the pure component scans
and the regression vectors for all 4 constituents. Less disper-
sion in predicted values was observed around each concentra-
tion level, which is in agreement with the higher-calibration
R2 statistics for the Raman calibration (Figure 3).

Following the construction of the PLS regression vectors
for each constituent, the N

∧
ASi was determined for each

Figure 4. Plot of RMSEC (squares) and RMSECV (triangles) vs the number of partial least squares factors used to model Raman data
for theophylline (a), lactose (b), microcrystalline cellulose (c), and starch (d), respectively. RMSEC indicates root-mean-standard error
for calibration; RMSECV, root-mean-standard error for cross-validation.
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calibration sample (Equation 2). Figure 6 depicts the NAS
vector and the interference spectrum for each calibration
sample for theophylline, lactose, MCC, and starch. Although
205.5 to 1895.7 cm–1 was used during calibration, a reduced

range was plotted to highlight the contrast between NAS and
interference spectra. As was observed for NIR, the patterns
demonstrate the selectivity of multivariate calibration for
each component.

Figure 5. Near-infrared (a) and Raman (b) spectra of the same design point (40% theophylline, 40% lactose, 20% microcrystalline
cellulose, and 0% starch) compacted at 67.0, 117.3, 167.6, 217.8, and 268.1 MPa. For each spectrum, the value for the first variable
was subtracted to facilitate viewing.

Figure 6. Raman pure component spectra (upper solid lines), PLS regression vectors (lower solid lines), net analyte signal (black), and
interference (gray) vectors for each calibration sample, for theophylline (a), lactose (b), MCC (c), and starch (d), respectively. NAS
indicates net analyte signal; PLS, partial least squares; MCC, microcrystalline cellulose.
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FOM Comparison

Table 1 displays the calibration statistics describing the per-
formance of the NIR and Raman spectrometers under inves-
tigation for this 4-component solid dosage system. With
regard to accuracy, the Raman calibration appears to have
an advantage over NIR, as reflected by the lower RMSE
as well as the superior coefficient of determination. Among
the 4 components, theophylline was modeled the most ac-
curately by both NIR and Raman spectroscopy. This result
is most likely attributable to higher sensitivity and selectiv-
ity relative to the other components. This topic will be ad-
dressed in greater detail in the following paragraphs.

The ICH guidance on method validation for repeatability26

provides a protocol for partitioning sources of variance (ie,
instrumental noise, sample positioning error, instrument drift).
In particular, it was noted that repositioning inconsistency
was a large contributor to total error for both the NIR and the
Raman calibrations. The Raman analyzer sampled approx-
imately 6 mm of the surface (roughly 46% of the tablet sur-
face); in contrast, the off-line NIR instrument sampled nearly
the entire compact face. Furthermore, NIR has a greater depth
of sampling relative to Raman spectroscopy. Therefore,
sample heterogeneity and/or sample presentation effects have
a greater influence on Raman spectroscopy’s precision. The
impact of sampling heterogeneity is reduced as the number of
samples analyzed per time period is increased, as a result of
averaging. For example, if these methods were implemented

in an at-line environment, the difference in precision between
Raman spectroscopy and NIR would be expected to decrease.
Additionally, more equitable comparisons between these
2 analyzers could be made by implementing a modified
sample holder capable of precisely positioning 13 mm
tablets, by analyzing tablets of a diameter similar to the diam-
eter of those used for the Raman spectroscopy, or by aver-
aging multiple locations on either side of the tablet.

In some cases, error statistics were inconsistent with ex-
pected trends, as shown in Table 1. For example, intermediate
precision values calculated using the Raman data were ac-
tually lower than repeatability figures for both MCC and
starch. This is unexpected, as intermediate precision includes
the additional factor of day-to-day instrument drift. This may
be indicative of an incomplete estimate of the variance asso-
ciated with sample repositioning.

While the accuracy and precision data provide a feasible
means of comparing these 2 spectrometers, the power of
the evaluation can be enhanced by determining additional
calibration FOM. Sensitivity for both analytical devices
was the largest for theophylline; an increase in its concen-
tration resulted in the greatest response in instrumental in-
tensity. The relative magnitude of peaks in unscaled pure
component spectra (not shown) illustrates this effect. It is
important to note that the sensitivity values of individual
constituents for the 2 instruments cannot be compared.

Table 1. Calibration Statistics and Figures of Merit for NIR and Raman as Determined for Each Constituent*

Data Type
NIR Raman

Method
PLS

Preprocessing 1st Derivative (11, 2, 1) 1st Derivative (33, 2, 1)

Latent Variables 3 4 4 4 4 4 3 3
Component Theophylline Lactose MCC Starch Theophylline Lactose MCC Starch

Accuracy

R2—cal 0.962 0.951 0.919 0.952 0.981 0.969 0.958 0.972
R2—CV 0.962 0.942 0.902 0.941 0.979 0.962 0.955 0.966
RMSEC (%) 2.7 3.1 4.0 3.1 1.9 2.5 2.9 2.4
RMSECV (%) 2.8 3.4 4.4 3.4 2.0 2.8 3.0 2.6

Precision

Repeatability—without
repositioning (%) 0.01 0.16 0.16 0.02 0.28 0.27 0.09 0.04

Repeatability—with
repositioning (%) 0.07 0.10 0.36 0.46 0.45 0.46 0.45 0.27
Intermediate (%) 0.11 0.16 0.52 0.66 0.35 0.66 0.36 0.26

Sensitivity (instrument intensity/%) 0.02 0.01 0.01 0.01 12 768.61 5124.58 3732.26 3265.58
Analytical sensitivity (1/%) 126.36 82.47 37.09 31.18 15.13 17.31 11.85 10.53
Effective resolution (%) 0.01 0.01 0.03 0.03 0.07 0.06 0.08 0.09
Selectivity (unitless) 0.59 0.33 0.24 0.27 0.37 0.24 0.18 0.16
Signal-to-noise (unitless) 282.40 189.88 87.23 72.14 34.99 40.69 26.80 23.98
Limit of detection (%) 0.33 0.50 1.08 1.31 2.70 2.32 3.53 3.94

*NIR indicates near-infrared; PLS, partial least squares; MCC, microcrystalline cellulose; cal, calibration; CV, cross-validation; RMSEC, root-mean-
standard error for calibration; RMSECV, root-mean-standard error for cross-validation. Preprocessing parameters (11,2,1) correspond to window
width, polynomial order, and derivative order, respectively.
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Analytical sensitivity is used to compare sensitivity across
different measurement technologies. This normalized statis-
tic quantifies sensitivity with respect to analytical precision.
Although both devices exhibited the greatest sensitivity for
theophylline, the NIR device was more sensitive to all 4
constituents (in terms of analytical sensitivity). Error of re-
positioning had a direct effect on σ in Equation 7, which in
turn inflated the denominator, thereby reducing the analyt-
ical sensitivity of Raman spectroscopy. The constituent
ordering for highest to lowest sensitivity is not identical for
the 2 instruments. This emphasizes the importance of pairing
the instrument to the analytical task. The effective resolution
results reinforce the results reported for sensitivity. Despite
the apparent similarity, this statistic should be considered
with respect to quality action limits.

Selectivity is important only when adequate sensitivity is
available. A lack of selectivity has the effect of suppressing
sensitivity. If adequate sensitivity is not available, attempts
to improve selectivity are futile. Theophylline, which exhib-
ited high relative sensitivity, also exhibited superior selec-
tivity, which is directly attributable to its inherent pure
component orthogonality. In contrast, the collinearity among
lactose, MCC, and starch (all carbohydrates) reduced selec-
tivity. For Raman spectroscopy in particular, the sensitivity
(Equation 6) and selectivity are lower for these components.
This is manifested in the performance-related FOM (LOD,
analytical sensitivity, effective resolution, and S/N ratio). An
example of the enhanced interference between these 3 com-
ponents can be seen in the NIR at ~1500 nm, where the NAS
signal is quite large for all 3 (Figure 2).

From the results discussed thus far, the resulting S/N ratio
analysis should be straightforward. The NIR calibration in-
cluded the more usable signal in relation to obstructive noise.
In some cases, researchers assume that the coefficient of de-
termination is directly predictive of the S/N ratio.30 It is for
this reason that technology selection criteria are often based
upon R2 and RMSE, since these statistics are frequently gen-
erated during calibration, requiring no additional calcula-
tions. The results of this work contradict these assumptions.
While Raman spectroscopy outperformed NIR in terms of
linearity and accuracy, the S/N ratio for NIR measurements
was greater. This occurred because error statistics (R2 or
RMSE) are heavily influenced by the experimental design,
while S/N ratio is inherent to the method. Further studies are
planned in which calibrations will be optimized according to
S/N ratio (as opposed to the traditional method of RMSE);
the impetus is to address the aforementioned precision issues
while simultaneously enhancing sensitivity, selectivity, and
LOD.

It is interesting to note that despite the lower relative pre-
cision of the Ramanmeasurements, which deflates several of
the FOM, no negative effect on the ability of the SIMPLS

algorithm to resolve the covariance structure was observed.
This is because inverse least squares regression is less af-
fected by precision than by sample leverage in the estimation
of the true solution. This supports the notion that calibration
quality is not sufficient to fully describe method performance.

CONCLUSION

This study demonstrates that multivariate FOM (determined
from NAS theory) can be used to compare calibrations con-
structed from spectroscopic data collected using 2 analytical
instruments detecting different physical phenomena. The
observed calibration performance statistics demonstrate that
NIR and Raman spectroscopy are both suitable for the quan-
titative determination of chemical components within this
tablet matrix. Beyond error statistics, multivariate FOM pro-
vide a clearer assessment of the factors that limit method
performance. For all of these reasons, FOM should take
a more prominent place among chemometric techniques
used in pharmaceutical analytical method development and
validation.
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